REPORT ON: Geo-Technical Investigation Report for Lower Bhadra River, Botiaghata, Khulna

DATE EXPLORATION: 10th June 2017 to 16th June 2017

DOCUMENT NUMBER: G-I/IWM/6-17/RPT-01

SUBMITTED TO: Director Survey and Data Division Institute of Water Modelling (IWM)

PREPARED BY: Engr. K.M. Rashedul Islam Geo-Technical Engineer

978, Level-2, East Shewrapara, Mirpur, Dhaka-1216, Bangladesh Phone: 01552-367277, 01972-367277, e-mail: bidconbd@yahoo.com

TABEL OF CONTENTS

ABBREVIATIONS

1.0	General					
	1.1	Introduction	1			
	1.2	Objective				
	1.3	Site description				
	1.4	Seismic information for the site				
	1.5	Scope of work				
	1.6	Methodology of field work				
		1.6.1 Methods of advancing borehole	3			
		1.6.2 Performing Standard Penetration Test (SPT)	4			
		1.6.3 Collection of Disturb Sample	4			
		1.6.4 Collection of Undisturbed Sample	4			
		1.6.5 Observation ground water table	4			
		1.6.6 Field inspection and records	5			
	1.7	Correlation of soil property with SPT				
		1.7.1 Cohessionless soil deposits	5			
		1.7.2 Cohesive soil deposits	6			
		1.7.3 Correction of Field SPT values	6			
2.0	Laboratory Test and Analysis					
	2.1	Introduction 8				
	2.2	Laboratory test of soil				
		2.2.1 Natural Moisture Content	8			
		2.2.2 Grain size distribution analysis	8			
		2.2.3 Atterberg Limits	9			
		2.2.4 Specific gravity test	9			
	2.3	Physical Properties	10			
3.0	Bearir	ng Capacity Analysis				
	3.1	Introduction	11			
	3.2	Standard Penetration Test (SPT)	11			
	3.3	Shallow Foundation	11			
		3.3.1 Cohesive soil	12			
		3.3.2 Non-cohesive soil	12			
	3.4	Deep foundation	18			

4.0 Conclusion and Recommendation

4.1	Conclusion	19
4.2	Recommendation	19

INDEX FOR ANNEXURE

ANNEX	А	Borehole Location Plan	20	
ANNEX	В	Soil Strata & Boring Log		
ANNEX	С	Laboratory Test Results		
	C-1	Grain Size Distribution Test	24~32	
ANNEX	D	Summary sheet	33	

ABBAREVIATION

BH	Bore Hole
BH.WL	Bore-hole water level
С	Average cohesion for the soil stratum of interest
C _c	Compression Index
C _{vane}	Cohesion obtained from laboratory vane shear apparatus
D _f	Depth of foundation.
EGL	Existing ground level
GWT	Ground water table
К	Coefficient of lateral earth pressure
NMC	Natural Moisture Content
N′	Corrected SPT for Overburden Pressure.
N″	Corrected SPT for Dilatancy Effect.
N _f	Field SPT.
P _o '	Effective Overburden Pressure.
q _{pa}	Allowable Point Bearing Capacity .
F _{sa}	Allowable Skin Friction
Q _u	Unconfined Compressive Strength
A	Adhesion Factor.
Δ	Effective Friction Angle Between soil & pile Material

CHAPTER-ONE GENERAL

1.1 Introduction

After being appointed **"Baseline Infrastructure Development Consultants Ltd. (bidcon Itd.)"** carried out Geo-Technical Investigation at Lower Bhadra River, Polder-29 , Batiaghata, Khulna.

The sub-surface exploration program includes -

- Executing Three (3) bore holes (each bore hole is approx. 30.00 deep from EGL).
- Performing Standard Penetration Tests (SPT)
- Collecting disturbed samples.
- Collecting undisturbed samples.
- Performing different field and laboratory tests.
- Evaluating bearing capacity of soil at different layer's and
- Recommending for appropriate foundation type.

1.2 Objective

Sub-soil explorations were conducted to obtain the information useful for following purposes:

- To select the type & depth of foundation for given structure.
- To determine the bearing capacity of the soil.
- To determine the probable maximum and differential settlement.
- To establish the ground water level.
- To select suitable construction techniques
- The relevant information was obtained by drilling holes, taking the soil samples and determining the index engineering properties of soil.

1.3 Site description

Geo-Technical Investigation at Lower Bhadra River, Polder-29, Batiaghata, Khulna. Borehole location map is presented in appendix A-1.

1.4 Seismic Information for the site

Based on the severity of earthquakes Bangladesh has been divided into three seismic zones namely Zone 1, Zone 2 and Zone 3, which have seismic zoning coefficient, Z of 0.075, 0.15 and 0.25 respectively (BNBC-1993).

According to this zoning the project site at Lower Bhadra River, Batiaghata, Khulna is situated in Zone 3. A copy of the Seismic Zoning Map from BNBC-1993

1.5 Scope of work

Scope of the work of Sub-Soil Investigation work are stated below-

- a) Execution of exploratory of Bore hole.
- b) Execution of Standard Penetration Test (SPT) in every 1.50 meter (5 feet) interval and count blows for penetration of each 15 cm (6").
- c) Collection of Disturbed and Undisturbed Sample as required.
- d) Measure of Ground Water Table (GWT) of each bore hole after 24 hours from completion of boring.
- e) Perform Laboratory Test.
- f) Analysis of test results and recommendation for structural foundation.
- g) Preparation of report.

1.6 Methodology of Field work

1.6.1 Method of Advancing Borehole

Boreholes were drilled by wash boring technique. Initially a hole was made by driving vertically a 10.16 cm diameter steel casing into the ground upto a suitable depth. Soil inside the casing was broken up by repeated drops of a chopping bit attached to the lower end of a drilling rod, upper end of which was fitted to swivel head through which water or clay slurry as required was forced at high pressure. Forced slurry or water emerged at high velocity through the pore of the chopping bit and returned to the surface through the annular space between drilling rod and the side of the casing or hole, carrying with it the broken up soils for inspection and recording of strata as the bore was advanced. In this way drilling was advanced upto a level of 15 cm (6") above the depth where SPT had to be executed and this 15 cm of soil had not been broken up by drops of chopping bit.

Relevant ASTM D1586 & ASTM D1587 specifications were followed for the subsurface exploration with measurement of standard penetration resistance (SPT N-value) and collection of disturbed (D) and undisturbed (UD) samples.

1.6.2 Performing Standard Penetration Test(SPT)

Standard penetration test was executed in all the bore holes at 1.5 m intervals. In this test, a split-barrel sampler as specified in ASTM D1586 was used to penetrate 45 cm (18") into the soil by drops of a hammer weighing 63.5 kg (140 lbs) falling freely from a height of 76 cm (30"). The number of blows required for penetration of total 60 cm (24") was recorded in the logs of borings shown in Fig. The number of blows required for the middle 30 cm (12") penetration was taken as the standard penetration resistance (SPT N-value). Soil sample in the spilt spoon of the sampler was collected and preserved in airtight container with proper identification and transported to Laboratory Dhaka for laboratory testing.

1.6.3 Collection of Disturbed Sample

Soil sample in the spilt spoon of the sampler was collected and preserved in airtight container with proper identification and transported to "bidcon Itd"s Geotechnical Laboratory Dhaka for laboratory testing. This soil sample was considered as disturbed (D) sample.

1.6.4 Collection of Undisturbed Sample

75 mm diameter seamless thin-walled steel tube (commonly known as Shelby tube) was used for collection of undisturbed (UD) cohesive soil sample in accordance with ASTM D1587 method. Before collection of sample, the hole was washed and cleaned. The Shelby tube was attached to the lower end of the drill rod with the help of an adapter and was lowered into the hole. The sampler was then pushed down into the ground until the tube, except 100 mm from the top, was filled with soil sample. After the Shelby tube was taken out of the hole, the ends were cleaned and sealed with molten wax as per standard method in order to prevent any change in moisture content of the collected soil sample during transportation and storage until laboratory test. The Shelby tube sample was properly identified with labels - one label pasted on the body of the tube and the other label tied with a port of the tube.

1.6.5 Observation of Ground Water Table

Generally, Ground Water Table is measure and record of each borehole after 24 hours from completion of boring.

1.6.6 Field Inspection and Records

During the advancing of the borehole shavings and cuttings of soils brought up by the boring tools were examined visually and by touch at the site. The depth, where the soil indicated change in soil characteristics, was recorded and a borehole log was made in the field with field identification and classification of soil samples.

1.7 Correlation of soil property with SPT

1.7.1 Cohesion less Soil Deposits

The sand deposits where encountered within the boreholes were grouped depending on their relative density assessed using the measured SPT results and the correlation between relative density and SPT N-value (Terzaghi and Peck, 1967).

Relationships exist between the SPT N-value and the angle of shearing resistance, ϕ for granular soils (Peck, Hanson and Thornburn, 1974). For silty uniformly graded fine sands, typical ϕ values range from about 27^o for very loose sand, upto a maximum of about 34^o for dense and very dense sands for Bangladesh soils.

Based on the results of the SPT tests and grading analysis, the following values for angle of shearing resistance, ϕ are suggested for the granular soils of the proposed site for use in the computation of the ultimate and allowable load bearing capacity formulas suggested by different authors for different foundation types.

Relative Density	SPT N-value	Φ degree	
Very loose sand	< 4	< 28°	
Loose sand	4 - 10	28°-30°	
Medium dense sand	10 - 30	30°-32°	
Dense sand	30 - 50	32° - 34°	
Very dense sand	> 50	340	

Table-1: Correlation between SPT N-value, Consistency and Angle of Internal Friction (Φ)

1.7.2 Cohesive Soil Deposits

Choice of Soil Parameters: Unconfined Compressive Strength and Un-drained Shear Strength.

Terzaghi & Peck (1967) have provided correlations between SPT N-value, consistency and unconfined compressive strength, q_u , for saturated cohesive soils as shown in the Table below. This correlation is quite useful but has to be used according to the soil conditions encountered at the site.

 Table-2:
 Correlation between SPT N-value, Consistency and Unconfined

 Compressive Strength

Consistency	SPT N-value	Unconfined Compressive Strength, q _u (kPa)
Very soft	0 - 2	< 25
Soft	2 - 4	25 - 50
Medium stiff	4 - 8	50 - 100
Stiff	8 - 15	100 - 200
Very stiff	15 - 30	200 - 400
Hard	> 30	> 400

Undrained shear strength (C_u) of the cohesive soil deposits is half of the unconfined compressive strength, q_u (i.e. $C_u = \frac{1}{2}q_u$). The undisturbed cohesive soil samples taken from the site were tested in the laboratory for q_u . The values of q_u are presented in the report as mentioned earlier.

1.7.3 Correction of the field SPT values.

a) Dilatancy Correction:

Silty fine sands and fine sands below the water table develop pore pressure which is not easily dissipated. The pore pressure increases the resistance of the soil and hence the penetration number (N).

Terzaghi and Peck (1967) recommended the following correction in the case of silty fine sands when the observed value of N exceeds 15. The corrected SPT number is $N_c = 15 + 0.5$ (N-15) Where N is the recorded value, and N_c is the corrected value. If N<15, $N_{C}=N$.

b) Overburden pressure correction:

In granular soils, the overburden pressure affects the penetration resistance. If the two soils having the same relative density but different confining pressures are tested, the one with a higher confining pressure gives a higher penetration number. As the confining pressure in cohesion less soils increases with the depth, the penetration number for soil at shallow depths is under estimated and that at greater depths is over estimated. For uniformity, the N – values obtain from field tests under different effective overburden pressures are corrected to a standard effect overburden pressure.

The overburden correction is applied first and then the dilatancy correction is to be applied.

The correction given by Bazaraa (1967), and also by Peck and Bazaraa (1969), is one of the commonly used corrections. According to them,

 $N_{C}=~4N$ / (1+0.0418 $P_{o})$ if $P_{o}<~71.8~kN/m^{2}$ and

 $N_{C}=\,4N$ / (3.25+0.0104 $P_{o})$ if $P_{o}{>}71.8$ kN/m^{2} and

 N_C = N if P_o = 71.8 kN/m^2

Where N is the recorded SPT value, N_{c} is the corrected SPT value and P_{o} is overburden pressure.

CHAPTER-TWO LABORATORY TEST AND ANALYSIS

2.1 INTRODUCTION

All the samples were carefully inspected visually and by touch in the laboratory and respective samples were selected for necessary tests in the laboratory. The following physical and geotechnical properties as considered necessary for and applicable to the type of the selected soil samples were determined by different laboratory tests as per relevant ASTM specifications:

2.2 LABORATORY TEST OF SOIL

The list of laboratory test are stated below-

SI. No.	Name of the Tests	Number of Test	Remarks
01	Natural Moisture Content	18 Nos.	
02	Grain Size distribution test	18 Nos.	

2.2.1 Natural Moisture Content:

The water content of the soil sample is the ratio of the weight of the water in the sample to its dry weight. It is usually expressed as a percentage. The soil sample is weighted both in natural state and in oven dry state and moisture content is calculated by driving the loss of weight of the sample by its dry weight.

2.2.2 Grain Size Distribution Analysis:

The object of grain size analysis is to determine the size of the soil grains, and the percentage by weight of soil particles of different particle size, comprising a soil sample. The process consists of either sieve analysis or hydrometer analysis or both. The Hydrometer analysis is adopted for sample passing sieve No 200.

For hydrometer analysis, a 50 g of oven dry sample is thoroughly mixed with required quantities of water in a calibrated glass cylinder. In order to avoid flocculation, a little dispersing agent (5 g) is adding. The density of the suspension is measured at specified time intervals, by means of a hydrometer or special design. At any particular time, the size of largest particle remounting in suspension at the level of the hydrometer can be computed by means of

Stocks law, whereas the weight of the particles finer than size, can be computed from the density of the suspension at the same level.

For sieve analysis soil sample is washed through U.S Standard sieve No. 200 and the fraction retained is dried. The fraction retained of each sieve is weighted for calculation of the percentage of different fraction. The results are represented by cumulative curves plotted on semi logarithmic graph paper.

2.2.3 Atterberg Limits:

Physical properties of clay are greatly influenced by water content. A given soil behaves as a fluid or a soil or, as plastic materials, depending on how much water it contains. The water contents that correspond to the boundaries between the states of consistency are called as the Atterberg limit.

Liquid Limit is the minimum water content at which a clay soil just starts behaving like a fluid. It is determined with the help of a standard limit device which consists of brass cup and an arrangement to impart blows to cup at a uniform as the limit.

The plastic limits is the minimum water content at which a soil is just plastic and is determine by rolling out a soil sample at a slowly decreasing water content until, the desired water content is reached, at which a thread of 1/8 inch diameter. Just beginning to crumble, the thread is rolled on glass plate with hand.

2.2.4 Specific Gravity Tests:

The specific gravity of a solid defined as the ratio of the unit weight of the solid in air to the unit weight of water. To determine the specific gravity of soil sample, 20 grams of oven dried soil sample is thoroughly pulverized and is placed in a calibrated pycnometer. Water is poured inside the pycnometer until its top is slightly below the calibrated mark. The mixture is then boiled thoroughly in order to eliminate the air baubles. More water is then added to mixture, the temperature is then recorded and the bottle is weighted. The Specific Gravity G_s is given by:

 $\begin{array}{lll} G_S = (Gt \; x \; W_S) \; \div \; (W_S \; - \; W_{PSW} + W_{PW}) \\ \\ Where, & G_S & = \; Specific \; Gravity \; of \; water \; at \; TOC. \\ & W_S & = \; The \; weight \; of \; over \; dry \; soil \; (20 \; gms) \\ & W_{PSW} & = \; Weight \; of \; Pycnometer \; + \; soil \; + \; water \end{array}$

W_{PW} = Weight of Pycnometer + water

2.3 Physical Properties

The physical properties of the sub soil formation of the proposed site have been evaluated on the basis of 3 (three) nos. borehole depth 30 meter as have been selected and pointed out by the client.

These may be summarized as follows:

a) Ground water table:

The position of ground water table (GWT) elevation and existing ground elevation at boring point are stated at boring layout plan.

b) Stratification of soil

The overall soil formations of the investigated site are almost regular in between the borehole locations. The top layer of the investigated site has been encountered with comprising medium dense sandy silt. The underlying soil is of medium dense to very dense condition gray fine sand, little to some silt. (Ref. Bore logs).

c) Natural moisture content:

Natural moisture of the soil varies from 17% to 28%.

CHAPTER-THREE BEARING CAPACITY ANALYSIS

3.1 INTODUCTION

The Bearing capacities of the foundation including both of the shallow and the Deep have been evaluated for the existing sub-soil condition. In doing so, the overall field SPT values have been corrected due to the effect of the overburden pressure at the different layers of investigation in the case of each borehole. There are discussed in detail in the following articles.

3.2 STANDARD PENETRATION TEST

The Standard penetration test is the most commonly used in situ test, especially for cohesion less soils which cannot be easily sampled. The test is extremely useful for determining the relative density and the angle of shearing resistance of cohesion less soils. It can also be used to determine the unconfined compressive strength of cohesive soil.

If the number of blows for 150 mm drive exceeds 50, it is taken as refusal and the test is discontinued. The standard penetration number is corrected for dilatancy correction and overburden correction as explained.

3.3 SHALLOW FOUNDATION

The Bearing Capacity of the shallow foundation including the Continuous wall/RCC strip as well as the isolated type footing foundations particularly for the cohesive soil may roughly be evaluated on the basis of SPT value as suggested by Tergaghi according to the following table.

Consistency	Allowable Bearing Capacity, q _a in tsf)		
	Continuous Footing	Isolated Column Footing	
Very soft	0.000 - 0.225	0.000 - 0.300	
Soft	0.225 – 0.450	0.300 - 0.600	
Medium	0.450 – 0.900	0.600 – 1.200	
Stiff	0.900 – 1.800	1.200 – 2.400	
Very Stiff	1.800 – 3.600	2.400 - 4.800	
Hard	> 3.600	≻ 4.800	
	Consistency Very soft Soft Medium Stiff Very Stiff Hard	Consistency Continuous Footing Very soft 0.000 – 0.225 Soft 0.225 – 0.450 Medium 0.450 – 0.900 Stiff 0.900 – 1.800 Very Stiff 1.800 – 3.600 Hard > 3.600	

Table-3.3.1: The Bearing Capacities of the shallow foundation values in tsf (F.S.-3.0)

Note:

a. The above values are the net allowable Bearing Capacities

3.3.1 Cohesive Soil

The Bearing Capacity of the shallow foundation including the continuous wall/RCC strip as well as the isolated type footing foundations have been evaluated according to the general bearing capacity equation as suggested by Terzaghi. The equation is as follows.

 $q_{ult} = \ C \ N_c S_c \ +q' \ N_q \ +0.5 \ y \ B \ N_y \ S_y$

Where, q_a = Allowable bearing capacity of the shallow foundation (F. S. = 3.0)

 $C = Cohesion = q_u/2$

 $q_u \mbox{=}$ Unconfined compression strength (obtain from the laboratory test or estimated from the corrected SPT values).

 S_c = Shape factor = 1.0 for continuous footing and 1.3 for square footing.

 N_c = Bearing capacity factor for the shallow foundation.

3.3.2 Non cohesive soil

The bearing capacities of the shallow foundation particularly for the frictional cohesive soil may be evaluated according to the equations of the bearing capacity of the soil as suggested by Meyerhof (which is subsequently adjusted by J.E. Bowles after increasing 50%). The equations are as follows-

 $q_a = N/F_1 x K_d x C_w$ for $B < F_4$

 $q_a = N/F_2 x ((B + F_3)/B)2 x K_d x C_w$ for $B > F_4$

Where,

 q_a = Allowable bearing pressure in KPa or Ksf (for maximum settlement 1").

N = Statical average of the corrected SPT values (N) within the pressure influence zone of about 0.5 B above the footing base to at least 2B below the same.

 $K_d = 1.0 + 0.33 \times D_f/B < 1.33.$

 $C_w=0.5 + 0.5 \times ((D_w/(D_f+B))) =$ Water table correction factor.

 D_f = Depth of foundation.

B = Width of foundation, B=1.5 m and 2.5 m have been considered respectively for the continuous and the isolated footing foundation.

According to the SI system, the factors are as follows.

 $F_1{=}0.05,\;F_2{=}0.08,\;F_3{=}0.30,\;F_4{=}1.20$

Based on the above formula, the bearing capacities of the shallow foundation including both of the continuous and the isolated type of footing foundation have been evaluated on the basis of the soil parameters obtain from the laboratory tests or from the corrected SPT values.

Table: 3.3.1: Allowable Bearing Capacity for Shallow Foundation (F.S.-3.00)

Borehole No.	Depth	Allowable Bearing Capacity, q _a , kN/m ²		
	(ft.)	Square Footing	Strip Footing	
	1.00	664.36	537.35	
	2.00	573.92	464.20	
	3.00	543.77	439.82	
	4.00	543.77	439.82	
	1.00	694.51	561.73	
	2.00	419.79	339.53	
DH-UZ	3.00	419.79	339.53	
	4.00	387.60	313.50	
	1.00	724.65	586.12	
	2.00	724.65	586.12	
6п-03	3.00	754.80	610.50	
	4.00	694.51	561.73	

Notes:

a) Depth has been measured from EGL of boreholes

b) Factor of Safety, F.S.-3.00

c) Allowable Bearing Capacity (q_a) in kN/m²

3.4 DEEP FOUNDATION

a) Cohesive soil

The skin friction and the end bearing capacities of the Pile may be evaluated by the following formula. (Ref. Foundation Analysis and Design by J.E. Bowels, 2nd Editions, P-599 & P-600).

The static ultimate bearing capacity of pile in clay soil is-

 $Q_u = Q_b + Q_f = C_b N_c A_b + a c_u A_s$

The value of the bearing capacity factor N_c that is generally accepted is 9 which is the value proposed by Skempton (1951) for circular foundations for a L/B ratio greater than. The base capacity of a pile in clay soil may now be expressed as-

 $Q_b = 9C_bA_b$

The value of c_b may be obtained either from laboratory tests on undisturbed sample or from the relationships established between c_u and field penetration tests.

Meyerhof has suggested a semi-empirical relationship for estimating skin friction in clays.

By utilizing a value of 20^{0} for ${\it 00}'$ for the stiff to very stiff clays, the expressions reduce to-f_s = 0.36 c_u

In practice the maximum value of unit friction for bored piles is restricted to100 kPa.

b) Cohesion less soil

Whenever necessary Deep Foundation preferably pile may be used .To evaluate skin friction and end bearing capacity following formula may be used-

According to Mayerhof for granular soil

$$\begin{array}{lll} Q_{u} = & Q_{b} + Q_{f} & = q_{b}A_{b} + f_{su}A_{s} \\ f_{su} & = 0.67N_{corrected} \ (average) & \text{for bored Piles} \\ & = 2N_{corrected} \ (average) & \text{for displacement Piles} \end{array}$$

$q_{\scriptscriptstyle b}$	= 133N _{corrected}	for bored Piles
	= 40N _{corrected} (L/d)	for displacement Piles,
	where 40N _{corrected} (L/d)<	<400 N _{corrected}

where,	Qu	= ultimate total load kN
	Ncorrected	= average corrected SPT value below pile tip
	N _{corrected} (avg)	= average corrected SPT value along the pile shaft
	A_b	= Base area of pile, m^2
	A_s	= Shaft surface area in, m ²

Bearing Capacity of 500 mm (20 inch) dia Bored Pile has been computed at different depth from existing ground level (EGL). The computed values have been stated in **Table-3.4.1 to Table-3.4.03**.

Table-3.4.1:Allowable Load Bearing Capacity of 500mm dia
Board cast-in-situ pile.

BH-0	1
------	---

Depth	Skin Friction	Base	Bearing	g Capacity	Allowable Bearing
(m)	(f _{su}), kN/sqm	Resistance (q _{pu}),kN/sqm	Q _s , kN	Q _b , kN	$Q = \frac{Q_s + Q_b}{3.0}$
1.00	14.740	2926.000	23.149	574.410	199.187
2.00	13.735	2527.000	44.720	496.082	180.267
3.00	13.177	2394.000	65.414	469.972	178.462
4.00	12.898	2394.000	85.669	469.972	185.214
5.00	12.596	2261.000	105.451	443.863	183.105
6.00	12.730	2660.000	125.444	522.191	215.878
7.50	12.730	2527.000	155.433	496.082	217.171
9.00	12.646	2394.000	185.224	469.972	218.399
10.50	13.028	3192.000	215.914	626.630	280.848
12.00	13.534	3591.000	247.797	704.958	317.585
13.50	13.765	3192.000	280.225	626.630	302.285
15.00	14.126	3591.000	313.502	704.958	339.487
16.50	14.534	3857.000	347.740	757.177	368.306
18.00	14.740	3458.000	382.464	678.849	353.771
19.50	14.874	3325.000	417.503	652.739	356.747
21.00	15.201	3990.000	453.312	783.287	412.200
22.50	15.528	4123.000	489.893	809.396	433.096
24.00	15.708	3724.000	526.896	731.068	419.321
25.50	15.833	3591.000	564.195	704.958	423.051
27.00	16.114	4256.000	602.155	835.506	479.220
28.50	16.399	4389.000	640.787	861.616	500.801
30.00	16.659	4389.000	603.439	861.616	488.351

Notes:

a) Q = Total Load Bearing Capacity of pile, kN

b) Q_b = Total Base Resistance of pile, kN

c) Q_s = Total Shaft Resistance of pile, kN

d) Factor of Safety = 3.00

Table-3.4.2: Allowable Load Bearing Capacity of 500mm dia Board cast-in-situ pile.

BH	-02
----	-----

Depth	Skin Friction	Base	Bearing	g Capacity	Allowable Bearing
(m)	(f _{su}), kN/sqm	Resistance (q _{pu}),kN/sqm	Q _s , kN	Q _b , kN	$Q = \frac{Q_s + Q_b}{3.0}$
1.00	15.410	3059.000	24.201	600.520	208.240
2.00	12.395	1862.000	43.668	365.534	136.401
3.00	11.390	1862.000	61.556	365.534	142.363
4.00	10.720	1729.000	78.392	339.424	139.272
5.00	10.184	1596.000	94.385	313.315	135.900
6.00	9.827	1596.000	109.818	313.315	141.044
7.50	9.380	1330.000	131.915	261.096	131.004
9.00	8.961	1197.000	153.026	234.986	129.337
10.50	9.678	3059.000	175.824	600.520	258.781
12.00	10.452	3458.000	200.446	678.849	293.098
13.50	10.842	2926.000	225.987	574.410	266.799
15.00	11.223	3059.000	252.424	600.520	284.315
16.50	11.596	3192.000	279.742	626.630	302.124
18.00	12.012	3458.000	308.040	678.849	328.963
19.50	12.641	4256.000	337.818	835.506	391.108
21.00	12.981	3591.000	368.398	704.958	357.786
22.50	13.203	3325.000	399.501	652.739	350.747
24.00	13.586	3990.000	431.507	783.287	404.931
25.50	13.964	4123.000	464.403	809.396	424.600
27.00	14.271	3990.000	498.022	783.287	427.103
28.50	14.644	4389.000	532.520	861.616	464.712
30.00	14.984	4389.000	499.701	861.616	453.772

Notes:

a) Q = Total Load Bearing Capacity of pile, kN

b) Q_b = Total Base Resistance of pile, kN

c) Q_s = Total Shaft Resistance of pile, kN

d) Factor of Safety = 3.00

Table-3.4.3:Allowable Load Bearing Capacity of 500mm dia
Board cast-in-situ pile.

BH	-03
----	-----

Depth	Skin Friction	Base	Bearing	g Capacity	Allowable Bearing
(m)	(f _{su}), kN/sqm	Resistance (q _{pu}),kN/sqm	Q _s , kN	Q _b , kN	$Q = \frac{Q_s + Q_b}{3.0}$
1.00	16.080	3192.000	25.254	626.630	217.294
2.00	16.080	3192.000	50.507	626.630	225.712
3.00	16.303	3325.000	76.112	652.739	242.950
4.00	16.080	3059.000	101.365	600.520	233.962
5.00	15.812	2926.000	126.198	574.410	233.536
6.00	15.857	3192.000	151.101	626.630	259.243
7.50	15.984	3325.000	188.756	652.739	280.498
9.00	15.745	2793.000	225.847	548.301	258.049
10.50	15.484	2660.000	262.325	522.191	261.505
12.00	15.276	2660.000	298.311	522.191	273.501
13.50	15.227	2926.000	334.183	574.410	302.864
15.00	15.243	3059.000	370.090	600.520	323.537
16.50	15.307	3192.000	406.150	626.630	344.260
18.00	15.601	3857.000	442.903	757.177	400.027
19.50	15.767	3591.000	480.047	704.958	395.002
21.00	16.038	3990.000	517.828	783.287	433.705
22.50	16.198	3724.000	555.987	731.068	429.018
24.00	16.266	3458.000	594.306	678.849	424.385
25.50	16.538	4256.000	633.267	835.506	489.591
27.00	16.817	4389.000	672.883	861.616	511.500
28.50	17.069	4389.000	713.094	861.616	524.903
30.00	17.298	4389.000	674.017	861.616	511.877

Notes:

a) Q = Total Load Bearing Capacity of pile, kN

b) Q_b = Total Base Resistance of pile, kN

c) Q_s = Total Shaft Resistance of pile, kN

d) Factor of Safety = 3.00

Graphical Representation of Pile Load Bearing Capacity of Different dia pile Considering Bore hole no. BH- 02 in Fig. 3.4.1

Notes:

- a) Q = Total Load Bearing Capacity of pile, kN
- b) Q_b = Total Base Resistance of pile, kN
- c) Q_s = Total Shaft Resistance of pile, kN
- d) Factor of Safety = 3.00

CHAPTER-FOUR CONCLUSION AND RECOMMENDATION

4.1 CONCLUSIONS:

On the basis of above analysis and discussion, the following conclusions may be drawn regarding the sub-soil condition of the project area.

- a) The overall soil formations of the investigated site are almost regular in between the borehole locations.
- b) The top layer of the investigated site has been encountered with comprising medium dense sandy silt (Ref. Bore logs).
- c) The underlying soil is of medium dense to very dense condition gray fine sand, little to some silt. (Ref. Bore logs).
- d) Shallow and Pile foundation may be provided for the project site.

4.2 RECOMMENDATION:

On the basis of aforesaid conclusion, the following recommendations are suggested for the project.

a) DEEP FOUNDATION:

Allowable bearing capacity (F.S.=3.0) of 500mm diameter pile may be obtained from the table stated in **Table-3.4.1 to 3.4.03**.

The bearing capacities (F.S.=3.0) of different dia pile with the embedment length up to 30 meter from EGL is considering BH-02 (**please see Fig. 3.4.1**)-

- = 383 kN for 450 mm dia pile.
- = 454 kN for 500 mm dia pile.
- = 613 kN for 600 mm dia pile.
- = 896 kN for 750 mm dia pile.

The designer would finally select the appropriate type, size and depth of foundation.

- Foundation base should be kept dry during construction Period.
- Pile load test should be performed. If pile load test is not performed then the value of capacity should be modified.

ANNEXURE

ANNEX-A

(Borehole Location Map)

BOREHOLE LOCATION MAP Lower Bhadra River Batiaghata, Khulna 40.00 G I V X Polder-29 r a Bhadr 5 We 0 76 m PWD lmage © 2017 CNES / Altbus © 2017 Google

ANNEX-B

(Soil Strata & Boring Log)

Annex-B, Page # 21

978, East Shewrapara, Mirpur Dhaka- 1216, Bangladesh Project: GEO-TECHNICAL INVESTIGATION AT LOWER BHADRA POLDER-29, BOTIAGHATA, KHULNA FIELD BORING LOG METHOD OF BORING = WASH STARTING = 13/06/2017, 8:00 AM BORE HO BORE HOLE DIAMETER (m) = 0.100 FINISHG = 14/06/2017, 1:30 AM BH-C DEPTH OF BORING (m) = 30.000 BORE HOLE POSITION (GPS CO-ORDINATE) WATER L BORING POINT EGL (RL), m PWD = (-) 6.237 EASTING 749612 (UTM) GROUND WATER LEVEL (RL),m PWD = NORTHING 2509478 UTM) LWL= (-)1.0 ML and we	RIVER
Dhaka- 1216, Bangladesh POLDER-29, BOTIAGHATA, KHULNA FIELD BORING LOG METHOD OF BORING = WASH STARTING = 13/06/2017, 8:00 AM BORE HO BORE HOLE DIAMETER (m) = 0.100 FINISHG = 14/06/2017, 1:30 AM BORE HO BORING POINT EGL (RL), m PWD = 0.100 BORE HOLE POSITION (GPS CO-ORDINATE) WATER L BORING POINT EGL (RL), m PWD = (-) 6.237 EASTING : 749612 (UTM) HWL= 2.904 GROUND WATER LEVEL (RL),m PWD = - NORTHING : 2509478 GRAPHICAL PRESENTATION MUL Ithological Discription Max Discription DEPTH (mm) Graphical Presentation Graphical Presentation	
FIELD BORING LOGMETHOD OF BORING=WASHSTARTING=13/06/2017,8:00 AMBORE HOLBORE HOLE DIAMETER (m)=0.100FINISHG=14/06/2017,1:30 AMBH-CDEPTH OF BORING (m)=30.000BORE HOLE POSITION (GPS CO-ORDINATE)WATER LBORING POINT EGL (RL), m PWD=(-) 6.237EASTING:749612(UTM)GROUND WATER LEVEL (RL), m PWD=-NORTHING:2509478(UTM)HHLITHOLOGICALHSUNG ON SPOONDEPTH (mm)CGRAPHICAL PRESENTATIONWYSIITHOLOGICALLITHOLOGICALNOTOOF OROF ORGRAPHICAL PRESENTATION	
METHOD OF BORING = WASH STARTING = 13/06/2017, 8:00 AM BORE HOL BORE HOLE DIAMETER (m) = 0.100 FINISHG = 14/06/2017, 1:30 AM BORE HOL DEPTH OF BORING (m) = 30.000 BORE HOLE POSITION (GPS CO-ORDINATE) WATER L WATER L BORING POINT EGL (RL), m PWD = (-) 6.237 EASTING : 749612 (UTM) GROUND WATER LEVEL (RL), m PWD = - NORTHING : 2509478 (UTM) LWL= (-)1.4 HL 3 GUN WATER LEVEL (RL), m PWD = - NORTHING : 2509478 (UTM) LWL= (-)1.4 WL 3 UN W S ITHOLOGICAL DESCRIPTION IN SUM SON SPOON Image: Starting Start	
BORE HOLE DIAMETER (m) = 0.100 FINISHG = 14/06/2017, 1:30 AM BH-C DEPTH OF BORING (m) = 30.000 BORE HOLE POSITION (GPS CO-ORDINATE) WATER L BORING POINT EGL (RL), m PWD = (-) 6.237 EASTING : 749612 (UTM) GROUND WATER LEVEL (RL), m PWD = - NORTHING : 2509478 (UTM) LWL= (-)1.0 H L H L HOLOGICAL DESCRIPTION H L HOLOGICAL DESCRIPTION H J H H L H J H H H H H H H H H H H H H	le ID
DEPTH OF BORING (m) = 30.000 BORE HOLE POSITION (GPS CO-ORDINATE) WATER I BORING POINT EGL (RL), m PWD = (-) 6.237 EASTING : 749612 (UTM) GROUND WATER LEVEL (RL), m PWD = (-) 6.237 EASTING : 2509478 (UTM) LWL= (-)1.4 HL HL G HL HUL BLOWS ON SPOON DEPTH (mm) Control of the second	1
BORING POINT EGL (RL), m PWD = (-) 6.237 EASTING : 749612 (UTM) HWL= 2.90 GROUND WATER LEVEL (RL), m PWD = - NORTHING : 2509478 (UTM) LWL= (-)1.0 H L H L HOLOGICAL DESCRIPTION H L I THOLOGICAL DESCRIPTION H L S H L	EVEL
GROUND WATER LEVEL (RL), m PWD = - NORTHING : 2509478 (UTM) LWL= (-)1.0 UTHOLOGICAL PHYSICAL BLOWS ON SPOON DEPTH (mm) GRAPHICAL PRESENTATION UTHOLOGICAL UTHOLOGI	sm,PWD
BORING DEPTH (mm) BLOWS ON SPOON SCALE BLOWS ON SPOON BORING DEBTH (mm) GRAPHICAL PRESENTATION BLUE DEVENTION	64m,PV
Scale Scale Sample Inthological Description 0 Discription 0 Discrin 0	
	J ation)
0.00 - 0 10 20 30 40 5	0 60
1.00 D-01 8 12 16 20 28 28 28	
2.00 D-02	+++-
3.00 D-03 SAND SOME SILT $\overset{\text{ul}}{\sigma}$ 6 8 12 16 20	
4.00 D-04 Z 6 8 12 15 20 20	
5.00 D-05 0 6 8 10 14 18 18	
6.00 D-06 8 10 14 18 24 24	
7.50 D-07 SILTY SAND 8 10 12 15 22 22	
8.50 UD-1	
9.00 D-08 6 8 12 14 20 20	
10.50 D-09 8 14 18 22 32 32 32 32	
13.50 D-11	
■ 15.00 D-12	
SILTY SAND $\alpha = \alpha$	
16.50 D-13 0 , 13 18 24 30 42 744	
■ 18.00 D-14 \square \ge 2 \square 17 20 27 37 \square 37	
21.00 D-16	
22.50 D-17	6
24.00 D-18 SAND SOME SILT	
25.50 D-19	++++
	48
28.50 D-21 17 28 22 - 50 50 Diows for 250 mm	
30.00 D-22 SAND SOME SILT $\frac{9}{40}$ 17 30 20 - 50 50 blows for 250 mm	
NOTES: Disturbed Sample L.BR. = LIGHT BROWN M.ST. = MEDIUM STIFF Undisturbed Sample M.D. = MEDIUM DENSE S.PL. = SEMI PLASTIC	

Engr. Shakil Ahmed Laboratory Engineer K.M. RASHEDUL ISLAM Geo-Technical Engineer

Annex-B, Page # 22

C		GEO-T bid	echnical labora	ato ed	RY		Clie	ient : DIRECTOR, SURVEY AND DATA DIVISION INSTITUTE OF WATER MODELLING (IWM)									
		978, E	East Shewrapara, N	lirpu b	ır		Pro	ject:	GEO	-TECH		AL IN	IVESTIGATION AT LO	VER BHADRA RIVER			
		Dhaka	- 1210, bangiadesi		FI	FI		R(9, BC		GHATA, KHULNA				
METH		BORIN	G	_	1		<u>-</u> -	STAR		NC	-	11/0	Γ 16/2017 8·00 ΔΜ	BORE HOLE ID			
BORF			(m)	_	().10	0	FINIS	SHG			12/0	06/2017, 2:00 AM	BH-02			
DEPTH		RING	(m)	=	.3	0.00	າດ	BORF		F POS	SITIO	N (G	PS CO-ORDINATE)	WATER LEVEL			
BORIN	NG POI	NT EGL	(RL), m PWD	=	(-)5.9	33	EAST	ING		:	749	472 (UTM)	HWL= 2.906m,PW[
GROU	ND WA	TER LE	VEL (RL),m PWD	=		-		NOR	THING	3	:	250	9254 (UTM)	LWL= (-)1.664m,P\			
ш	Н			Р	HYS	SICA	۱L	BLO	ws o	N SP	OON						
SCALE SAMPLE TYP	BORING DEP (In Meter)	SAMPLE ID	LITHOLOGICAL DESCRIPTION	DENSITY	COLOR	MOISTURE	DILATANCY	150 0 _]	00 120	450 300 mm)	450	Tq2	GRAPHICAL PRESENTATION (Nos. of Blows per 300mm penetration)				
	0.00	-		1	1	1							0 10 20 30) 40 50 6			
	1.00	D-01						10	13	16	18	29		29			
	2.00	D-02						4	6	8	11	14					
	3.00	D-03	SILTY SAND	I S E				4	6	8	10	14					
	4.00	D-04		ЧU				3	5	8	10	13	13				
	5.00	D-05		Σ				3	5	7	10	12					
	6.00	D-06						3	5	7	10	12					
	7.50	D-07		ЕD				3	4	6	8	10	10				
	8.50 9.00	<u>UD-1</u> D-08	SILTI SAND	Σ				3	4	5	8	9					
	10.50	D-09			-			10	14	16	20	30		30			
	12.00	D-10					U	12	16	20	23	36					
	13.50	D-11			~	s L	STI	10	13	15	18	28		28			
	15.00	D-12	SANDY SILT		۲		- PLA	- PLA	- PLA	- P L A	10	14	16	18	30		- 30
	16.50	D-13			с В	-					12	15	17	20	32		• 32
	18.00	D-14		SE		Σ	и 0	13	16	20	24	36		36			
	19.50	D-15		DEN			Z	15	22	26	32	48		48			
	21.00	D-16						12	16	22	30	38					
	22.50	D-17						12	15	20	25	35		35			
	24.00	D-18	SII TV SAND					14	20	24	28	44		44			
	25.50	D-19	JILII JANU					15	22	25	30	47		47			
														44			
	27.00	D-20						13	20	24	30	44					
	28.50	D-21		ISE				16	22	28	35	50					
	30.00	D-22				16	22	28	35	50		• 50					
NOTES	S:	Distur Undist	bed Sample surbed Sample	L.BI M.S M.D S.PI N.P	R. 5T. 0. L. L.	= L = N = N = S = N	IGHT IEDIU IEDIU EMI ION F	T BROV UM STI UM DEI PLAST PLASTI	VN FF NSE IC C								

Engr. Shakil Ahmed Laboratory Engineer K.M. RASHEDUL ISLAM Geo-Technical Engineer

Annex-B, Page # 23

																	AI	II IEX	-D, Г	ay	5#4
C		GEO-T		RY	_	Clie	ent :	nt : DIRECTOR, SURVEY AND DATA DIVISION													
1		978 F	I CON limite Fast Shewrapara M		ır		Dro	lioct:													
1		Dhaka	a- 1216, Bangladesl	h h	•1		1710	ject:	POI L	DER-2	чится 29. В0	AL IN	GHAT4	igat A, Kf		AT LOV	ver	внаl	JKA I	KI V E	Ξĸ
<u> </u>					F	F) R(<u><u> </u></u>	00))	., 13							
МЕТН	OD OF	BORIN	G	=	• •	VAS	H	STAR	TING		_	14/0	, 06/20 ⁻	17.	11:0	DO AM		BOR	E HO	LE I	D
BORE	HOLE D	DIAMET	FER (m)	=	(0.10	0	FINIS	SHG		=	15/0	06/20 ⁻	, 17,	6:00) PM		В	BH-C)3	
DEPTI	H OF BC	RING	(m)	00	BORE	HOL	E POS	SITIC	N (G	PS CC)-OR	DINA	ATE)		WAT	ER L	EVE	EL			
BORII	NG POI	NT EGL	. (RL), m PWD	230	EAST	ING		:	749	383	(U	ΓM)		Н	WL=	2.906	5m,F	۷WD			
GROU	IND WA	ter le	VEL (RL),m PWD	=		-		NORT	THING	6	:	250	9042	(U ⁻	ΓM)		L	WL=	(-)1.6	64n	n,PW
Щ	ΗL	0		۱L	BLO	ws o	N SP	OON													
LE TYF	DEP eter)	LE IC	LITHOLOGICAL	ΓY	2	JRE	νcγ	C	DEPTH	(mm)	F		GR	АРН	ICAL P	RES	ENTA		J	
SC/	RING N M	AMP	DESCRIPTION	ISN3	OLO	ISTL	ATA	0	150	300	450	S	(No	s. of	Blov	vs per :	300r	nm p	enetr	atio	n)
SA	BOF)	S		DE	C	MO	DIL	150	300	450	009										
	0.00	-											0	10	2	0 3	30	40	5	0	60
	1.00	D-01						10	15	18	22	33					I	3 <u>3</u> 22			
	2.00	D-02		ш				10	14	18	22	32					N	25			_
	3.00	D-03	SILTY SAND	S N				10	15	20	24	35					30)			
	4.00	D-04		ш				0 8	14	10	20	30 20				L L	29				
	6.00	D-06						10	14	18	20	32					À.	32			
										_								25			
	7.50	D-07		ш	-			10	15	20	25	35					\square	- 55			
	9.00	D-08		N S				8	12	15	18	27				1	27				
	10.50	D_09		ы D				8	10	15	20	25				4 2	5				
	10.50	D-07	SAND SOME SILT	Σ				0	10	15	20	25									
	12.00	D-10		N I O			ပ –	7	10	14	16	24				• 24	₽				
	13.50	D-11		ΛΕ		-	⊢ 	8	12	16	20	28				X	28				
	15.00	D 12		2	7	S	A S	10	12	10	24	21					3	1			
	15.00	D-12			R	-	РГ	10	13	10	24	31									
	16.50	D-13			G	0		10	14	18	24	32						52			_
	18.00	D-14				Σ	Z O	12	18	24	30	42							42		_
	10 50		SILTY SAND				z	10	1/	22	07	20						438	3		
	19.50	D-15		ш				12	10	22	27	30						N			
	21.00	D-16		N S				14	20	24	30	44) 44		
	22.50	D-17		DЕ				13	18	22	27	40						1	40		
	24.00	D 10						10	17	20	25	~ -						(37			
	∠4.00	8ו-ע						12	1/	20	25	31						N	\downarrow		+
	25.50	D-19	SAND SOME SILT					16	22	26	31	48							N	48	+
	27.00	D-20						16	22	28	34	50								50)
														50	hlov	ws for 2) 25 r	nm			-
	28.50	D-21		SE				18	30	20	-	50				-					+
	30.00	D-22		18	30	20	-	50		50	blov	ws for 2	225 r	nm			_				
																		+			
NOTE	S:	Distur	pea Sample	L.BI M.S	≺. T.	= L = N	ight Iedii	I BROW	/N FF												
		Undist	turbed Sample	M.D S.PI). L.	= M = S	IEDI EMI	um dei Plasti	NSE IC												
	En an C	Shokil I		N.P	L.	= N	ON F	PLASTI	С								11 10			_	

Engr. Shakil Ahmed Laboratory Engineer K.M. RASHEDUL ISLAM Geo-Technical Engineer

ANNEX-C

(Laboratory Test Results)

ANNEX-C-1

(Grain Size Distribution Test)

Engr. Shakil Ahmed Laboratory Engineer

Engr. Shakil Ahmed Laboratory Engineer

Engr. Shakil Ahmed Laboratory Engineer

Engr. Shakil Ahmed Laboratory Engineer

Engr. Shakil Ahmed Laboratory Engineer

Engr. Shakil Ahmed Laboratory Engineer

N.B.	$C_c = Co-ef$	fficient of	curvatur,	C _{II} = Co-ei	fficient o	f uniformity	, D ₁₀ , D ₃₀	$D_{60} = 0$	Partical di	iameter at	% passing	NMC = Na	ntural Mois	sture Conte	ent

ANNEX-D

(Summary sheets)

	GEO-TECHNICAL LABORATORY											Client : DIRECTOR, SURV EY AND DATA DIVISION									
		bidco	on Itd.									INSTITUTE	OF WATER	MODELLING	G (IWM)						
		978, East	Shewrapara, I	Level-2, N	Mirpur, Dl	haka-1216				Project : GEO-TECHNICAL INVESTIGATION AT LOWER BHADRA RIVER											
										POLDER-29, BOTIAGHATA, KHULNA											
	<u>SUMMAR</u>										<u>OF TEST RESULTS</u>										
BH.	. Sample Depth fr. Moisture Density (gm/cc) Specific Atterbarg Limit				mit	Gra	n Size Anal	ysis	Unconfined	d Comp. Test	Direct S	hear Test	Consolidation								
No.	No.	EGL (m)	Content (%)	Wet	Dry	Gravity	LL (%)	PL (%)	PI (%)	Sand (%)	Silt (%)	Clay (%)	q _u (kPa)	Strain (%)	C (kPa)	Angle (φ)	Co	Cc	Cr		
BH-01	D-02	2.00	25.94%							72	28	0									
	D-05	5.00	28.50%							70	30	0									
	D-08	9.00	28.49%							71	29	0									
	D-12	15.00	27.60%							62	38	0									
	D-16	21.00	28.15%							74	26	0									
	D-21	28.50	26.39%							74	26	0									
BH-02	D-03	3.00	24.61%							58	42	0									
	D-06	6.00	27.13%							50	50	0									
	D-08	9.00	24.20%							50	50	0									
	D-12	15.00	24.32%							46	54	0									
	D-16	21.00	21.12%							70	30	0									
	D-21	28.50	20.51%							72	28	0									
BH-03	D-02	3.00	25.60%							69	31	0									
	D-06	6.00	17.33%							73	27	0									
	D-09	10.50	21.08%							73	27	0									
	D-13	16.50	21.29%							67	33	0									
	D-17	22.50	23.41%							72	28	0									
	D-21	28.50	22.56%							84	16	0									